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Sound frequency affects speech
emotion perception: results from
congenital amusia
Sydney L. Lolli, Ari D. Lewenstein, Julian Basurto, Sean Winnik and Psyche Loui*

Department of Psychology, Program in Neuroscience and Behavior, Wesleyan University, Middletown, CT, USA

Congenital amusics, or “tone-deaf” individuals, show difficulty in perceiving and
producing small pitch differences. While amusia has marked effects on music perception,
its impact on speech perception is less clear. Here we test the hypothesis that individual
differences in pitch perception affect judgment of emotion in speech, by applying low-
pass filters to spoken statements of emotional speech. A norming study was first
conducted on Mechanical Turk to ensure that the intended emotions from the Macquarie
Battery for Evaluation of Prosody were reliably identifiable by US English speakers.
The most reliably identified emotional speech samples were used in Experiment 1, in
which subjects performed a psychophysical pitch discrimination task, and an emotion
identification task under low-pass and unfiltered speech conditions. Results showed a
significant correlation between pitch-discrimination threshold and emotion identification
accuracy for low-pass filtered speech, with amusics (defined here as those with a pitch
discrimination threshold >16 Hz) performing worse than controls. This relationship with
pitch discrimination was not seen in unfiltered speech conditions. Given the dissociation
between low-pass filtered and unfiltered speech conditions, we inferred that amusics
may be compensating for poorer pitch perception by using speech cues that are
filtered out in this manipulation. To assess this potential compensation, Experiment 2
was conducted using high-pass filtered speech samples intended to isolate non-pitch
cues. No significant correlation was found between pitch discrimination and emotion
identification accuracy for high-pass filtered speech. Results from these experiments
suggest an influence of low frequency information in identifying emotional content of
speech.

Keywords: amusia, tone-deafness, pitch, filtering, speech, emotion, frequency

Introduction

Pitch is a perceptual attribute of sound that allows us to order sounds on a frequency-related
scale. It is an integral component of auditory processing, including music and language. Across
all spoken languages, pitch is one of several cues used to convey emotional prosody, and in some
language (tone languages) pitch is also used to convey meaning in words. Understanding how pitch
perception affects our interpretation of speech is essential to fully comprehend the ways in which we
communicate emotion through language.

Amusic, or “tone-deaf ” individuals, are limited in their ability to perceive and produce pitch
(Peretz et al., 2002; Hyde and Peretz, 2004; Vuvan et al., 2015). Though amusia is traditionally
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thought of as a music-specific disorder, studies have shown
that it may also affect perception of speech. In common-
practice Western music, pitches typically vary by a minimum
of one semitone. In language, intonation patterns that help us
discriminate between statements and questions are characterized
by pitch differences that range from 5 to 12 semitones, and occur
primarily at the conclusion of a speech fragment (Hutchins et al.,
2010). By contrast, pitch changes that reflect prosody in emotional
speech lie somewhere in between one and five semitones, and
occur over the course of a speech fragment, suggesting that
pitch variations in emotion expression are harder to detect than
question-statement differences (Dowling and Harwood, 1986).

Consistent with this hypothesis, Hutchins et al. (2010)
showed that when asked to discriminate between statements and
questions, amusics performed as well as controls. However, when
asked to judge whether the same stimuli ended with a rising
or falling contour, amusics were significantly less accurate and
consistent, suggesting a deficit of pitch awareness in amusics.
Though amusic subjects self-reported no difficulties during day-
to-day speech processing, Jiang et al. (2012) found that amusics’
brain activity was not reliably elicited in response to pitch changes
of one semitone in speech [this is in contrast to some early
processing of small pitch changes without conscious awareness
in music (Peretz et al., 2005, 2009)]. Also, (Nguyen et al.,
2009) observed some decreases in sensitivity to pitch inflections
found in a tonal language among amusic non-tonal language
speakers (Nguyen et al., 2009). Although results from amusics
are task-dependent and do overlap with non-amusic controls,
studies generally show that amusics have some impairments in
speech intonation processing, extending the effects of the disorder
beyond music. Other studies have shown that amusics self-report
difficulty detecting certain nuances in speech, such as sarcasm,
and that they struggle to judge emotional content of speech as
accurately as non-amusics (Thompson et al., 2012). In addition,
individuals with amusia-like deficiencies report difficulty in
determining emotion solely from speech, and may rely more
on facial expressions and gestures than control subjects do
(Thompson et al., 2012). Though there are other cues in emotional
communication that are available to amusics, limitations in the
ability to perceive pitch clearly contribute to deficiencies in
emotional speech perception.

It has been hypothesized that deficiencies may only be
noticeable when amusics are presented with very subtly
different stimuli. Liu et al. (2012) presented statement-question
discrimination tasks to Mandarin speakers, under conditions of
natural speech and gliding tone analogs. Amusics were worse
at discriminating gliding tone sequences, and had significantly
higher thresholds than controls in detecting pitch changes as
well as pitch change directions. However, amusics and controls
performed similarly in tasks involving multiple acoustic cues,
suggesting that instead of using fine-grained pitch differences
to interpret meaning, individuals with pitch perception deficits
might have relied on some non-pitch cues. In another study, Liu
et al. (2010) presented similar statement-question discrimination
tasks under the conditions of natural speech, gliding tones, and
non-sense speech analogs. Amusics performed significantly
worse than non-amusic control participants in discrimination

under all three conditions, suggesting deficiencies not only
in samples with isolated pitch contour, but also in natural
speech. Liu et al. (2015) again examined this link between
amusia and speech processing in Mandarin speakers using
speech samples with normal or flattened fundamental frequency
contours. Amusics showed reduced speech comprehension when
listening to flattened samples in quiet and noisy conditions,
while controls only showed reduced speech comprehension in
noisy conditions, suggesting that amusics experience speech
comprehension difficulties in everyday listening conditions, with
deficits extending to impaired segmental processing, rather than
being limited to pitch processing.

Our study aims to analyze the extent of impairment in more
nuanced areas of speech, namely emotional recognition. It has
been suggested that individuals may compensate for poor pitch
perception by relying more heavily on alternative cues within
speech to infer emotional content, such as stress and emphasis
(Hutchins et al., 2010). Speech segments that express five emotions
(happy, sad, irritated, fearful, tender) and no emotion are
presented as both filtered and non-filtered stimuli to participants.
Rather than focusing exclusively on amusic populations, our goal
is to test how individual differences in pitch perception can impact
the processing of emotional prosody.

Frequency filtering methods are often used in tests that
diagnose deficits in auditory perception, in order to simulate
subtle differences in music and speech content (Patel et al.,
1998; Ayotte et al., 2002; Bhargava and Başkent, 2012; O’Beirne
et al., 2012). Low-pass filters may be used to examine speech
intelligibility independently or in conjunction with other auditory
disturbances (Horwitz et al., 2002; Bhargava and Başkent, 2012).
The majority of speech prosody cues are preserved, while
speech intelligibility is lost, with a sharply sloped low-pass filter
around 500 Hz (Knoll et al., 2009; Guellaï et al., 2014). In
our first experiment we applied a low-pass filter that attenuates
frequencies above 500 Hz to disrupt intelligibility while still
maintaining the fundamental frequency of speech sounds, which
gives rise to their pitch contour. In our second experiment,
we applied a high-pass filter in order to retain cues other
than pitch contour, such as accents and sibilants, which may
provide emotional cues. High-pass filters have been used in
previous studies, but rarely in amusic populations. Our filter
attenuated frequencies below 4800 Hz, providing the listener with
minimal pitch contour while preserving rhythmic structure and
sibilants.

Natural speech contains many cues that amusics can perceive,
prompting them to report predominantly normal speech
perception. Studies suggest that amusics who do not report
deficiencies in everyday speech may more heavily weigh
tempo, mode, and linguistic content in processing emotional
significance (Peretz et al., 1998; Gosselin et al., 2015). Low-pass
and high-pass filtered speech, in contrast to natural, unfiltered
speech, contain less information to factor into individuals’
interpretation of emotional content. We hypothesize that there
will be a negative correlation between pitch discrimination
thresholds and accuracy in emotional identification under
low-pass conditions, i.e., that individuals with poorer pitch
perception skills are less able to use low-frequency speech cues
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impairment, neurological disorders, or psychiatric disorders.
Twenty-five of the forty participants reported musical training
with varying instruments for lengths of time ranging from
6 months to 13 years. Across participants with previous
musical training, an average of 6.5 years of training was
reported. All subjects took the Montreal Battery of Evaluation
of Amusia (MBEA) as well as the pitch discrimination test.
Pitch discrimination thresholds, as identified by the pitch
discrimination task (described below), ranged from 1.5 to 48 Hz
(mean = 10.5 Hz). Nine subjects were considered amusic based
on their inability to identify differences in pitch greater than
16 Hz apart (at 500 Hz) in the pitch discrimination task (amusic
mean = 23.2 Hz, SD = 10.4 Hz; control mean = 6.8 Hz,
SD = 3.9 Hz). Fifteen subjects were considered amusic based
on their scores on the MBEA contour subtest (fewer than 23
correct responses out of 31 possible). Four subjects failed both
the pitch discrimination threshold test and the MBEA. While
the MBEA and pitch discrimination test both measure aspects of
musical perception, especially pitch perception, MBEA is broader
and also measures attention and working memory. Here we rely
on the pitch discrimination test because we are interested more
specifically in pitch discrimination aspects of musical function,
rather than the attention and working memory components.

Materials
Several tests were administered to assess musical ability and
training: the contour subtest of the a pitch discrimination
threshold test MBEA, a questionnaire on demographic
information and musical training, and the Shipley Institute
of Living Scale (Shipley, 1940), used as a non-verbal IQ control
task as it has been shown to be a predictor of WAIS-IQ scores
(Paulson and Lin, 1970). Amusia was measured using the
contour subtest of the MBEA (Peretz et al., 2003) and a pitch
discrimination task. In the contour subtest, two brief melodies are
presented that are either identical or differ to varying degrees in
pitch contour. The pitch discrimination threshold test (Loui et al.,
2008) determines the smallest pitch interval that participants are
able to distinguish by presenting a series of two tones and asking
whether the second tone is higher or lower in pitch than the
first. The test uses a three-up one-down staircase procedure to
find the threshold range of pitch perception. The questionnaire
administered to the participants included questions about the
following: sex, date of birth, first languages, and history of hearing
impairment, neurological disorders, or psychological disorders.
The questionnaire also included questions on participants’
musical training history. If the subject responded that they had
trained on an instrument, he or she was asked to share the length
of training, age of onset, and the instrument(s) trained on.

A behavioral test was then administered using 84 non-filtered
and 84 low-pass filtered speech samples from the MBEP, chosen
from the norming study reported above. The non-filtered trial
condition consisted of natural (unfiltered) speech samples directly
from the database, excepting 12 samples that Mechanical Turk
workers did not reliably identify with above 50% accuracy. The
low-pass filtered trial condition consisted of frequency-filtered
versions of the same 84 speech samples, filtering out frequencies
above 500 Hz. Filtering was done in Logic X with the plugin

“Channel EQ” (Q factor = 0.75, slope = 48 dB/Octave). This
low-pass filtered condition was intended to eliminate formants
and other high-frequency cues from the speech samples, while
preserving the pitch contour of the speech samples. See Figure 2
for spectrogram representations of unfiltered (Figure 2A) and
low-pass filtered (Figure 2B) speech samples.

Procedure
Participants were individually administered the tests as stated
above in a laboratory setting with minimal noise interference.
Stimuli were presented through Sennheiser 280 HD Pro
headphones connected to a desktop iMac computer at a
comfortable volume for the subject. The experiment was created
using Max/MSP and the two trial blocks were presented in a
randomized order, with the aim of balancing out any potential
order effects of the blocks. All subjects were equally likely to start
on unfiltered and filtered speech. The speech samples within each
trial block were also presented in a randomized order. Subjects
used the mouse to choose one of the six emotion categories
listed from among six options: Happy, Sad, Irritated, Frightened,
Tender, and No emotion.

Data Analysis
Data were exported from the experiment in Max/MSP to Excel
and SPSS for analysis. Pitch discrimination thresholds were log-
transformed (log base 10) to achieve normal distribution.

Results

Log pitch discrimination threshold was significantly correlated
with emotional identification accuracy in the low-pass filtered
condition [r(38) = −0.38, p = 0.015; Figure 3A] but not in the
unfiltered speech condition [r(38) = 0.04, n.s.; Figure 3B].

Amusics (as identified by pitch discrimination thresholds)
performed worse than controls in the filtered condition
[t(38) = −3.13, p = 0.003], but not in the unfiltered speech
condition [t(38) = −0.58, n.s.; Figure 3C]. When amusics
were identified using the contour subtest of the MBEA, their
performance in the low-pass filtered condition was still below
that of controls (amusics mean = 62%, SD = 16%; controls
mean = 70%, SD = 12%); however the difference was only
marginally significant [t(38) = 1.7, p = 0.09]. Amusics identified
using the MBEA contour test did not differ in performance
from controls in the unfiltered speech condition [amusics
mean = 84%, SD = 10%, controls mean = 81%, SD = 9%,
t(38) = 1.14, p= 0.26].

When holding musical training constant in a partial
correlation, accuracy under low-pass conditions was still
correlated with pitch discrimination threshold [r(37) = −0.35,
p = 0.028] and unfiltered speech condition accuracy remained
uncorrelated [r(37) = −0.04, n.s.]. These results confirm that
even when controlling for musical training, pitch perception
was significantly correlated with emotional identification
accuracy under low-pass filtered but not under unfiltered speech
conditions. When controlling for Shipley Abstraction scores, the
correlations hold at r(37) = −0.38, p = 0.018 for the low-pass
condition, and r(37) = −0.04, n.s. for the unfiltered speech

Frontiers in Psychology | www.frontiersin.org August 2015 | Volume 6 | Article 13404

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

Lolli et al. Sound frequency affects speech emotion

FIGURE 2 | Spectrograms of a representative speech sample in (A) unfiltered, (B) low-pass filtered, and (C) high-pass filtered conditions.

condition. Using both Shipley scores and musical training as
control variables, accuracy in the filtered condition remained
correlated with pitch discrimination scores [r(36) = −0.35,
p= 0.033] and unfiltered speech accuracy remained uncorrelated
[r(36) = 0.03, n.s.].

As subjects were randomly assigned to begin the experiment
with the low-pass filtered block (n = 19, 6 amusics) or the
unfiltered block (n = 21, 3 amusics), it was possible for block
order to have influenced results: specifically, experience with
the unfiltered speech condition could have helped a subject’s
subsequent performance on the low-pass condition. A follow-
up analysis was conducted to assess the effects of block order
on performance in the low-pass filtered condition. Order was
incorporated as a variable in a between-subject ANOVA. A

two-way ANOVA on the dependent variable of accuracy in
the low-pass condition, with the factors of group (amusics vs.
controls) and block order (low-pass first vs. unfiltered speech
first) showed a significant main effect of amusia [F(1,36) = 5.5,
p = 0.025] and a significant main effect of block order
[F(1,36) = 7.3, p = 0.01], as well as a significant interaction
between amusia and block order [F(1,36) = 4.8, p = 0.034].
In addition to confirming that amusics performed worse at
emotional identification in low-pass filtered speech, this result
suggests that subjects learned to identify emotions via prosody
throughout the course of the experiment: those who started with
unfiltered speech subsequently performed better on the low-pass
filtered condition, compared to those who started on the low-pass
filtered condition, presumably because subjects learned during the
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FIGURE 3 | The relationship between log pitch discrimination threshold and emotional identification accuracy (A) in the low-pass condition and (B) in
the unfiltered speech condition. Red squares: amusics; blue diamonds: controls. Dashed line indicates chance performance. (C) Accuracy in emotional
identification in amusics and control subjects. **p < 0.01.

unfiltered speech condition to listen for pitch as an emotional
cue. Interestingly, the significant interaction between group and
block order shows that the amusics who started on the low-
pass condition performed worse than the amusics who started
on the natural speech condition, who were indistinguishable
in performance from controls. This interaction suggests that
learning throughout the experiment may occur even more in
amusics than in controls.

Scores on the MBEA showed no significant correlation
with emotional identification accuracy in the low-pass filtered
condition [r(38) = 0.18, n.s.]. MBEA was not correlated
with emotional identification accuracy under unfiltered speech
conditions [r(38)=−0.04, n.s.]. Amusics (as identified by MBEA
score) did not perform significantly differently between the
filtered condition [t(37) = −0.33, n.s.] and the unfiltered speech
condition [t(38) = 1.20, n.s.].

Discussion

Results show a robust association between pitch perception
ability and accuracy of emotional identification in speech in

the low-pass filtered conditions, but not in unfiltered speech.
Amusic individuals, identified as those who have poor pitch
perception abilities, are impaired in identifying the emotional
content of speech when high-frequency cues are removed from
the speech. These individual differences are uniquely related to
pitch discrimination abilities, and are not explained by differences
in general IQ or musical training.

Given the dissociation between low-pass filtered and unfiltered
speech conditions, we inferred that amusics may be compensating
for poorer pitch perception by using speech cues that are
filtered out in the former manipulation. To assess this potential
compensation, a second experiment was conducted, using high-
pass filtered speech samples intended to isolate non-pitch cues.

Experiment 2: High-Pass Filter

Materials and Methods
Participants
Twenty-nine participants (17 women and 12 men) aged 18–28
from an introductory psychology course at Wesleyan University
participated in exchange for course credit. Participants reported
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FIGURE 4 | The relationship between log pitch discrimination threshold and emotional identification accuracy (A) in the high-pass condition. (B) in the
unfiltered speech condition. Red squares: amusics; blue diamonds: controls. Dashed line indicates chance performance.

no hearing impairment, neurological disorders, or psychiatric
disorders. Twenty-one of the 27 participants reported musical
trainingwith varying instruments for lengths of time ranging from
1 to 11 years. Among participants with previous musical training,
an average of 5.6 years of training was reported. All subjects
took the Montreal Battery as well as the pitch discrimination
test. Pitch discrimination thresholds, as identified by the pitch
discrimination task (described below), ranged from 1.3 to 27.5 Hz
(mean = 10.5 Hz). Three participants were considered amusic
based on their inability to identify differences in pitch greater
than 16 Hz apart (at 500 Hz) in the pitch discrimination task
(amusic mean = 26 Hz, SD = 2.1 Hz; control mean = 7.8 Hz,
SD = 4.3 Hz). Twelve participants were considered amusic based
on their scores on the MBEA contour subtest (fewer than 23
correct responses out of 31 possible). Three participants failed
both the pitch discrimination and the MBEA tests.

Materials
The tests used to assess musical ability and training and the
Shipley Institute of Living Scale were the same as administered in
Experiment 1. A behavioral test of emotional identification was
then administered using the same 84 unfiltered (original) speech
samples from the MBEP (the same unfiltered speech samples
used in Experiment 1, chosen from the norming study reported
above), and 84 new high-pass filtered speech samples generated
for this experiment. Filtering was done in Logic X with the plugin
“Channel EQ” (Q factor = 0.75, slope = 48 dB/Octave). The
frequency cutoff for high-pass filteringwas chosen at 4800Hz (i.e.,
frequencies lower than 4800Hzwere attenuated) to eliminate cues
such as pitch contour and the majority of formant frequencies,
while preserving other cues such as speech rate, stress patterns,
and rhythm.

Procedure
Stimuli were presented through Sennheiser 280 HD Pro
headphones connected to a desktop iMac computer at a
comfortable volume for the subject. The main experiment was

created using Max/MSP and the two trial blocks were presented
in a randomized order to the participant. The speech samples
within each trial block were also presented in a randomized
order. Subjects used the mouse to choose one of the six emotion
categories as in Experiment 1.

Data Analysis
As in Experiment 1, data were exported from the experiment in
Max/MSP to Excel and SPSS for analysis. Pitch discrimination
thresholds were log-transformed (log base 10) to achieve normal
distribution.

Results

As shown in Figures 4A,B, pitch discrimination thresholdwas not
significantly correlated with accuracy under high-pass conditions
[r(27) = −0.05, n.s.], or with accuracy under unfiltered speech
conditions [r(27) =−0.28, n.s.]. MBEA was also not significantly
correlated with overall accuracy of subjects under unfiltered
speech conditions or under high-pass conditions.

While it appears that the high-pass filtering manipulation
on the speech samples did not result in the same sensitivity
to pitch discrimination differences compared to the low-pass
filtered speech in Experiment 1, an additional possibility was
that differences between the two experiments resulted from using
different subjects between the two experiments, i.e., a sampling
difference, which is potentially a confound especially since
there were only three subjects who met the pitch-discrimination
threshold criterion for amusia within the sample of Experiment 2.
In a follow-up analysis to test the equivalence of samples between
Experiments 1 and 2, we chose a subset of subjects from among
our subjects in Experiment 1 who were matched for pitch
discrimination thresholds, Shipley scores, and musical training
to our subjects in Experiment 2, thereby repeating our analysis
with only 3 amusics. A significant negative correlation was
still observed between log pitch discrimination threshold and
accuracy in the low-pass filtered speech condition, even within
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this reduced subset of the Experiment 1 sample [r(27) = −0.37,
t(27)= 2.07, p= 0.048]. This confirms that the samples of amusic
and control subjects are comparable between the two experiments,
and that the difference in data pattern between Experiments
1 and 2 is due to our experimental manipulations of the
speech samples rather than to sampling differences between the
experiments.

Discussion

Results showed no significant relationship between emotional
identification accuracy and individual differences of pitch
discrimination, in either the unfiltered speech or the high-pass
filtered speech conditions. Although only three of the 29 subjects
in this experiment showed pitch discrimination thresholds that
exceeded the cutoff for amusia, a continuum of individual
differences in pitch discrimination was captured in the present
sample. High-pass filtering the speech samples did not result
in any positive relationship between emotional identification
and pitch discrimination, suggesting that individuals with poor
pitch perception were not systematically using high-frequency
information in speech as a potential source of compensatory
cues toward emotional identification. Importantly, results were
not explained by sampling differences between Experiments 2
and 1, as a matched subset of data from Experiment 1 replicated
the negative correlation in the low-pass filtered condition
that was not observed in the high-pass filtered condition in
Experiment 2.

General Discussion

Results showed a significant negative correlation between pitch
discrimination thresholds and emotional identification for low-
pass filtered speech, but not high-pass filtered or unfiltered
speech. Subjects with poor pitch perception, especially amusics,
performed worse than their counterparts in identifying emotions
from speech, but only when the speech was low-pass filtered.
Amusics were defined here as those with a pitch discrimination
threshold of >16 Hz, resulting in nine identified amusics
in Experiment 1 and three subjects identified as amusics in
Experiment 2. The behavioral dissociation between low-pass and
unfiltered speech conditions suggests that low frequency energy
bands in speech carry important emotional content, to which
amusics are less sensitive.

In the low-pass filtered condition, the observed correlation
between emotional identification accuracy and individual
differences in pitch discrimination threshold was significant
even after controlling for IQ and musical training. This finding
suggests that individual differences in pitch perception can
exist above and beyond differences in cognitive capacity and
musical training, and can have far-reaching consequences
that generalize to domains of life beyond musical ability.
However, unlike previous reports (Thompson et al., 2012), we
did not observe a significant relationship between emotional
identification accuracy and pitch discrimination threshold in
unfiltered speech. While further work is needed to explain
the differences in experiment design that might give rise to

our different findings, the observed dissociation from the
current study between low-pass filtered and unfiltered speech
conditions supports the hypothesis that amusics could have
been compensating for their poorer pitch perception in low
frequency sounds by using other cues in the speech stimuli.
However, the high-pass filtering manipulation (Experiment
2) did not reveal more reliance on high frequency speech
cues among poorer pitch perceivers. This may suggest that
frequencies above 4800 Hz (the chosen cutoff for high-pass
filtering in Experiment 2) were also not the primary source of the
compensatory information in speech that amusics might be using
to approach the task of emotional identification. Alternately,
both groups were using other cues in speech, not captured in the
filters used in these studies, to accomplish the task of emotional
identification.

Pitch discrimination thresholds were used to define amusia in
these experiments rather than the MBEA, as the latter focuses
more on melodic discrimination than on individual differences in
pitch discrimination per se. While amusic participants performed
worse in low-pass trials, accuracy for all participants was well
above the chance level of 16%. This finding implies that while the
fundamental frequency (below 500 Hz) provides some prosodic
information such as pitch contour, cues that exist in the range
of frequencies between 500 and 4800 Hz may provide further
prosodic cues. These midrange frequencies may have been used
for emotion recognition in music, in light of recent findings that
amusics are able to show normal recognition of musical emotions
(Gosselin et al., 2015). Results are also consistent with recent
reports showing that amusia is limited to resolved harmonics
(Cousineau et al., 2015). Given these results, examining specific
frequency bands for prosodic cues may reveal more in the future
about the cues that amusics could be using to identify emotions,
and to understand speech and music in communication more
generally.

Insight into several additional questions may lead to a
more complete model explaining this relationship between
pitch discrimination and emotional identification. It remains
to be determined if there is a causal link between poor
pitch perception and poor emotional recognition, or if a third
underlying process leads to both deficiencies, as posited by
the musical protolanguage hypothesis (Thompson et al., 2012).
Poor pitch perception is associated with multiple behavioral and
neural differences, such as differences in neural connectivity
(Loui et al., 2009), pitch awareness (Loui et al., 2008; Peretz
et al., 2009), learning ability (Loui and Schlaug, 2012), and
working memory (Williamson and Stewart, 2010), and different
contributions of one factor or another may further affect prosodic
recognition.

In that regard, one factor thatmay affect prosodic recognition is
learning differences, which was addressed in a follow-up analysis
looking at order effects. This showed a significant interaction
between amusia and block order: amusics who started the
experiment by listening to low-pass filtered speech performed
worse than other amusics who started on unfiltered speech. This
interaction suggests that learning throughout the experiment may
occur even more in amusics than in controls. While more studies
are needed to address this possibility in the future, learning could
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potentially be one of the compensatory mechanisms that amusics
use to approach the task of emotional identification when pitch
perception is impaired.

Given that a significant correlation between pitch
discrimination ability and emotional recognition accuracy was
found only when high frequency bands were removed, the data
suggest that higher frequency information must have played
a role in accurate recognition. Further studies may benefit
from examining whether these trends are present among all
amusics, or whether in-group distinctions can be made between
different amusic individuals. Amusia may be a complex class of
disorders with subtle disabilities that are currently categorized
under a single category. Related symptoms of amusia, such as
rhythmic disabilities, poor singing ability, and deficiencies in
musical memory, may be examined to determine if these types
of disabilities also correlate with deficiencies in recognition of
emotional prosody. By investigating emotional identification in
speech by individuals with various musical difficulties, future
results may contribute further to the debate on the origins of
music and language.

Conclusion

The present study investigated the relationship between pitch
perception and emotional identification in speech. Using a battery
of speech that was spoken with different emotional prosody,
we showed that poor pitch perception is correlated with lower
accuracy in emotional identification tasks, but only for low-pass
filtered speech, and not for high-pass filtered or unfiltered speech.
The relationship between pitch discrimination and emotional
identification accuracy is not explained by differences in IQ
and musical training. Future research should be focused toward
identifying which speech cues are used by amusics in order to
compensate for impaired pitch perception.
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